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Abstract

We investigate the ability of EEG to distinguish between different activities users
engage in on their devices, building on previous research which showed a considerable
difference in brain activity between code- and prose-comprehension, as well as
differences during code- and prose-synthesis. We perform a replication study and
improve upon past results using state-of-the-art machine learning classifiers based on
Riemannian geometry.

Furthermore, we extend the scope of previous work by introducing the automated time
tracking application ActivityWatch, to track the device activities that the user is
engaging in. This lets us label EEG data with naturalistic device activity, which we
then use to train classifiers to discern activities such as code writing vs prose writing,
or work vs media consumption. Our results indicate that a consumer-grade EEG
device can discern between different activities that a user performs at the computer.
Among other results, we show that not only can code and prose comprehension be
distinguished, but also code and prose writing.

A full replication package, including source code and a sample dataset, is available at

github.com/ErikBjare/thesis

https://github.com/ErikBjare/thesis
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Introduction

Before we begin, we will present two technologies used:

▶ Functional brain imaging
▶ Automated time trackers



Introduction
Functional brain imaging

Functional brain imaging is used to measure aspects of brain
function.

Examples:

▶ Electroencephalography (EEG)
▶ Magnetoencephalography (MEG)
▶ Functional Magnetic Resonance Imaging (fMRI)
▶ Functional Near-Infrared Spectroscopy (fNIRS)



Introduction
Functional brain imaging > EEG

Developments in EEG the last ∼10 years:

▶ Cost reduction
▶ Consumer availability

Rough timeline:

▶ 2013: OpenBCI kickstarter
▶ 2016: InteraXon releases the Muse
▶ 2021: Neurosity releases the Crown



Introduction
Functional brain imaging > EEG

Applications:

▶ Clinical (sleep, epilepsy)
▶ Brain-Computer Interfaces
▶ Neurolinguistics research

▶ Discerning code vs prose comprehension
▶ Using MRI, by Floyd et al. [1]
▶ Using EEG & various biosensors, by Fucci et al. [2]

▶ Biofeedback / meditation aid
▶ Quantified self (measuring mood, focus)



Introduction
Automated time trackers

We use an automated time tracker to track which device
activity a user is engaging in.

Examples:

▶ Screen Time (Apple)
▶ Digital Wellness (Android)
▶ RescueTime (commercial use)
▶ TimeAware (research use)



Introduction
Automated time trackers

Issues with existing solutions:

▶ Data detail & temporal resolution
▶ Source availability / licensing
▶ Privacy concerns



Introduction
Automated time trackers

Our solution:

ActivityWatch

▶ “The world’s best free &
open-source automated
time tracker”

▶ Started in 2015 by me
▶ My brother joined in 2016
▶ >100,000 downloads
▶ >90 contributors
▶ Available on Windows,

macOS, Linux, and
Android.



Theory

Now a very brief introduction to underlying theory within
electroencephalography and machine learning.



Theory
Electroencephalography

Electroencephalography works by measuring tiny amounts of
electrical potential (voltage) on the skull, which is caused by
the activation of underlying neurons.

Measurements are taken about 256 times per second, using
one or more electrodes.



Theory
Electroencephalography



Theory
Electroencephalography

The 10–20 system is a standard for electrode placements.



Theory
Electroencephalography

ERPs, of Event-Related Potentials, are stereotyped responses
to a stimulus.

ERP Elicited by

N170 Processing of faces, familiar objects or words.
N400 Words and other meaningful stimuli.
P300 Decision making, oddball paradigm.
P600 Hearing or reading grammatical errors and other syntactic anomalies.



Theory
Electroencephalography

Example analysis of the N170 ERP:



Theory
Electroencephalography

The signal can be broken down into constituent frequencies.
They can be roughly grouped into frequency bands, which are
associated with certain brain states.

Frequency band Frequencies Brain states

Gamma (γ) >35 Hz Concentration
Beta (β) 16–35 Hz Active, external attention, relaxed
Sigma (σ) 12–16 Hz Sleep spindles
Alpha (α) 8–12 Hz Very relaxed, passive attention
Theta (θ) 4–8 Hz Deeply relaxed
Delta (δ) 0.5–4 Hz Sleep



Theory
Machine learning

Machine learning can be used to classify EEG signals.

Common approaches:

▶ Riemannian methods
▶ Deep learning
▶ Common Spatial Pattern
▶ Bandpower-features



Theory
Machine learning > Riemannian geometry

Riemannian methods in EEG utilizes the spatial information
encoded in covariance matrices to estimate the similarity
between two signals.

In the simple Minimum Distance to Mean (MDM) method,
covariance matrices for each class are averaged in Riemannian
space. For a new signal’s matrix, the distance to each class is
calculated, and whichever class distance is smaller becomes
the predicted class.



Theory
Machine learning > Riemannian geometry

The Riemannian distance metric δG for two symmetric positive
definite matrices A and B (such as covariance matrices) is [3]:

δG (A,B) =

√√√√ N∑
i=1

log2 λi (A,B)



Theory
Machine learning > Riemannian geometry

Figure: Schematic representation of the symmetric positive definite matrix manifold,
the geometric mean G of two points and the tangent space at G . The geometric
mean of these points is the midpoint on the geodesic connecting C1 and C2, i.e. it
minimizes the sum of the two squared distances. The map from the tangent space to
the manifold is an exponential map. The inverse map is a logarithmic map.

Source: Congedo et al. [4]



Method

We perform two different experiments:

1. Controlled code vs prose experiment
2. Naturalistic device use



Method
Devices

Muse S Neurosity Crown OpenBCI Cyton +
Ultracortex

Manufacturer Device Channels Sampling rate Comfort

InteraXon Muse S (2020) 4 256Hz High
Neurosity Crown (2021) 8 256Hz Medium
OpenBCI Cyton (2013) + Ultracortex 8–16 125–250Hz Low



Method
Collection

Next up: Collecting data for our code vs prose experiments,
followed by naturalistic use experiments.



Method
Collection > Code vs prose

(a) Code comprehension (b) Prose review

Figure: Sample of the tasks used as stimuli.



Method
Collection > Naturalistic

A single subject (me) measured EEG while engaging in natural
device use (both work and leisure). We define 4 categories of
device activity.



Method
Analysis

We train two classifiers:

▶ Riemannian geometry
▶ Bandpower-features (benchmark)

General software libraries used: scikit-learn, numpy, pandas.

Domain-specific libraries used: pyriemann, MNE, yasa.



Method
Analysis > The classifiers

Our Riemannian classifier pipeline is constructed like this:

from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from pyriemann.estimation import Covariances
from pyriemann.spatialfilters import CSP
from pyriemann.tangentspace import TangentSpace

clf = make_pipeline(
Covariances(),
CSP(4, log=False),
TangentSpace(),
LogisticRegression(),

)



Method
Analysis > The classifiers

Our bandpower-based classifier computes the bandpower of
each frequency band, and puts the values and their ratios in a
feature vector.

We then use common ML methods for the actual learning and
classification.



Method
Analysis > Windows and epochs

To train on and classify the EEG signal, we first need to label
it and split into fixed-size windows.

We divide the EEG-signal into epochs (according to their
stimuli markers), and then split those down into 5s windows
which we train on.

We then also aggregate the predictions back into their epochs
by taking the mean prediction of each window in the epoch,
yielding predictions for entire epochs.



Method
Analysis > Performance evaluation

To evaluate our classifiers, we need a suitable performance
metric and cross-validation method.



Method
Analysis > Performance evaluation

▶ Studies using EEG often use balanced accuracy (BAC).
▶ Balanced accuracy deals with imbalanced datasets.

For binary classification, BAC is defined as:

BAC =
Sensitivity + Specificity

2
=

TP
TP+FN

+ TN
TN+FP

2

This implies that, for the binary case, BAC = 0.5 is no better
than chance.



Method
Analysis > Performance evaluation > Validation

To ensure our classifier generalizes across subjects, we perform
Leave-One-Run-Out (LORO) cross validation.

Subject 1 Subject 2 Subject 3 Subject 4

Fold 1
Fold 2
Fold 3
Fold 4

For our naturalistic device use experiment we instead use
Stratified K-Fold cross-validation, as there is only one subject.



Method
Comparison with previous studies

Setting Study

This study Fucci et al. (2019) Floyd et al. (2017)

Experiment site Lund Univ. (Sweden) Univ. of Bari (Italy) Univ. of Virginia (USA)
# Participants 10 28 29
Participants experience Grads Undergrads Grads & Undergrads
# Tasks Variable 36 tasks 27 tasks

Task type
Code comprehension
Prose review

Code comprehension
Prose comprehension

Code comprehension
Code review
Prose review

Physiological signal Neural
Neural
Skin
Heart

Neural

Physiological measure EEG
EEG
EDA
HR, HRV, BVP

BOLD

Device Muse S
BrainLink Headset
Empatica wristband fMRI

Classifier Riemannian geometry 8 algorithms Gaussian Process

Classifier validation LORO-CV
LORO-CV
Hold-out LORO-CV

Classifier metric Balanced accuracy (BAC) Balanced accuracy (BAC) Balanced accuracy (BAC)



Results

▶ Controlled code vs prose experiment
▶ Naturalistic device use



Results
Controlled code vs prose experiment

Our results are:

Riemannian Bandpower

Subject Window-level Epoch-level Window-level Epoch-level

#0 0.673 0.727 0.511 0.541
#1 0.895 0.955 0.689 0.809
#5 0.616 0.542 0.628 0.750
#6 0.864 0.908 0.739 0.737
#7 0.749 0.900 0.733 0.733

Median 0.749 0.900 0.689 0.737

Table: The balanced accuracy for each LORO fold/subject. Excluding subjects 3, 4, 8,
9, and 10.



Results
Controlled code vs prose experiment

Compared to previous studies:

This study Fucci et al. Floyd et al.
Riemannian Bandpower

Overall 0.75 0.69 0.66 0.79

Table: Result comparison between the previous studies and this study. Best balanced
accuracy scores are reported. For this study, we used the best window-level score. For
Fucci et al. we chose the best EEG-only score.



Results
Naturalistic device use

Our naturalistic device use results:

Experiment Score Support Hours

Programming vs Writing 0.676 (1386, 209) 2.22h
Programming vs Twitter 0.695 (1386, 949) 3.24h
Programming vs YouTube 0.672 (1386, 266) 2.29h
Twitter vs Writing 0.833 (949, 209) 1.61h
Twitter vs YouTube 0.604 (949, 266) 1.69h
YouTube vs Writing 0.889 (266, 209) 0.66h



Conclusions

We conclude that we can discern code from prose using EEG,
in both settings.

We also find that. . .

▶ Using a Riemannian approach outperforms the use of
bandpower-features.

▶ It seems easier to discern work from leisure, than
inter-work or inter-leisure tasks.



Conclusions
Future work

▶ Collect more data
▶ NeuroTech Challenge
▶ More subjects for naturalistic use

▶ Implement classification in moabb
▶ Create prose comprehension stimuli in English
▶ Use even better EEG devices, or even try fNIRS
▶ Turn brainwatch into a proper app to complement

ActivityWatch



Discussion

Time permitting, we will briefly go over threats and ethical
considerations.



Discussion
Threats to validity

▶ Dataset
▶ Size
▶ Cherry-picked subjects

▶ Stimuli
▶ Prose review (not comprehension) stimuli



Discussion
Ethical considerations

▶ Research ethics
▶ Commercial ethics
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Appendix I
Data overview

Figure: Visualization of the labeled data with classifications from one example
subject-fold. Shows the Image (stimuli), the class Label for that stimuli (blue is code,
orange is prose), the Predicted class, whether the prediction is Correct, the Subject,
the Split/Fold (blue shows the training set, yellow the test set), and our threshold
measure for signal Quality (green indicates acceptable quality). The x-axis is the
window index, sorted by acquisition time.

It can be seen that (1) subjects #3 and #4 have bad signal quality, and have
therefore been excluded from the training set. (2) The subjects #9 and #10 have also
been excluded from training due to issues during data collection. (3) For subject #1
the stimuli images were not shuffled. (4) Subject #0 appears twice, as they did two
sessions (using unseen stimuli).
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